Mobile Nested Transactions Monitor
based on Multi-Agent Systems: Workflow Layer

Jorge Martinez!, Matias Alvarado?

! Antificial Intelligence Lab., CIC. National Technical University.

J. Batiz esq. O. De Mendizabal s/n., Mexico, DF, C.P. 07738
george@correo.cic.ipn.mx

2 PIMAyC, Mexican Petroleum Institute
Eje Central Lazaro Cardenas 152. Mexico, D.F., C.P. 07730
matiasa@imp.mx

Abstract. Transaction Processing Monitors featuring Nested Transactions are
in the core model for mission-critical applications. In this paper, a workflow
layer for Mobile Nested Transactions is presented together with a multi-agent
system implementation. The main advantage to introduce is a fauit-tolerant
mechanism. This is aimed to deal with both the loss of communication —very
usual in mobile environments- and concurrent client access.

Introduction

The mobile computing paradigm has introduced new issues and challenges in data
processing. Users are able to access their information with the help of mobile phones,
personal digital assistants and portable computers. However these devices are prone
to power outages, network disconnections and memory overflows. Then, control
mechanisms are required in order to preserve data and information consistency.
Transaction Processing is a Distributed Systems branch related to the study of data
consistency. Beyond the traditional flat models —where objects are stored at the same
host, the distributed approach for transaction processing encloses the scenario where
there’s more than one host.

The above-mentioned paradigms are distributed by definition. And so are Multi-
Agent systems. Considering such shared condition, it is proposed in this paper a
Transaction Processing Monitor based on a Multi-Agent system. It is also the
objective of this work, to take a formal model to the ground of a real implementation.
That is the case of the Logic of Interaction [1, 2], a BDI framework aimed to deal
with concurrent actions interaction within a distributed agents group.

In the next section, the multi-agent and mobile computing paradigms are explained
under an integrated scope. Section 3 presents a historical evolution of Transaction
Processing ending at the Mobile Nested approach, for which a Monitor is under
development. Section 4 describes the workflow layer for the Transaction Processing
Monitor and a control mechanism for transactional behavior in agents. Conclusions
and undergoing work are addressed in Section 5.

A. Gelbukh, G. Sidorov, W. Olan, J. Vera (Eds.) Recicntes avances en la ciencia de la
computacién en México, pp.38-47.0 Centro de Investigacion en Computacion, IPN, México



Mobile nested transactions monitor based on multi-agent systems: workflow layer 39

Multi-agent framework for mobile computing

Multi-agent systems have arisen as an alternative approach for solving distributed
problems. In fact, these kinds of systems are derived from research efforts in the field

Distributed Artificial Intelligence. It was the development of message exchange
mechanisms among smart-like computer systems, which pushed the idea for
modelling each entity as an agent.

The basic features in the expected behaviour of an agent are: autonomy, that
implies that the agent (to some extend) keeps control over its internal state and the
way it behaves over an environment; social ability, the agent must be capable of
interact and communicate with other entities during the problem-solving process; and
learning, that is, evolve through its life-cycle and acquire both new knowledge and
abilities. Additional features of agent and multi-agent systems include those related to
reasoning, mobility and persistence. It is also expected that agents perform sensing
operations over their environment as well as adaptability to deal with unexpected
events. Agents are designed to reach their goals under conditions described for their
information (knowledge/beliefs) [21].

Advances in wireless networking and portable information applications have
introduced a new paradigm known as mobile computing. Users are no longer
restricted to working at fixed sites. With mobile devices, such like phones, personal
digital assistants and laptop computers, users can access their information despite of
their geographical location. The multi-agent approach has been firmly related to
dealing with problems that are distributed in nature and located at fast evolving
environments. One example for these kinds of problems can be found in the ficld of
so called mobile computing [21]. A mobile computing environment is shown in
Figure 1; it is basically composed of: Fixed Hosts, Mobiles Hosts, Mobile Support
Stations. These latter provide wireless network access to a limited scope range named
Cell.

A Mobile User is that one who gets connected to the fixed network through his/her
mobile host. It would be fairly desirable to maintain a connection alive while the user
is on the road. The problems with a mobile environment arise when the device loses
its connection by any reason. The most frequent are low batteries, physical location of
the device (e.g. the user enters subway station) and links instability. From these
issues, it becomes feasible to implement multi-agent systems over mobile groups, that
is, one or more agents per device, which interact in order to fulfil a set of goals. The
main advantage to achieve is the development of a fault-tolerant mechanism that deals
with the lost of communication that may occur between two devices in a mobile
environment. The underlying issues of combining these two technologies have been
treated in (9] and {15]. This latter also mentions a mobile database approach like the
one introduced later in the present work. Examples of multi-agent systems over

mobile groups have been implemented for securing an clectronic marketplace [10]
and as schedulers for travellers [8].



40 lorge Martinez. Matias Alvarado

F ceLL ‘ /—F@\ ‘
ke 24

Mobile Station Mobile
\Group J \Group J

Fig. 1. Mobile Computing environment featuring two service Cells

3 Mobile nested transactions

The concept of Transaction can found in almost any type of business process
currently modelled by object-oriented techniques. In [5], it is paid special attention to
Transaction Processing as a hallmark for the next Client/Server technology
generation.

A definition from [7) mentions that a transaction works as a mechanism for
preserving consistency in the set of working objects. A common belief about the
origin of transactions, establishes that they come from Database Management
Systems theory. They were born from the user requirement for executing a set of
operations over a database as a unit. The transaction idea was introduced in the theory
of Distributed Systems under the form of Transactional File Servers {16]. There, the
objective was to provide file access service to concurrent users over a network. File
consistency required protection against multiple requests for both reading and writing.

In the present work, the goal is not only to control database access, but also to
coordinate a mobile group that involves logical units and physical devices. -

3.1 ACID properties

Transaction models are deeply based on the preservation of four basic properties.
Atomicity stands for “all or none” and implies that the set of operations comprising a
transaction must be executed as a whole. Although consistency is considered as a
transaction property, it actually refers to data state from the database; however it is the
responsibility for a transaction to take the database from a consistent state and to
leave it in a similar one. /solation means that a transaction must think of itself as the
only one in execution at a given moment. Durability stands for data persistence; once
a transaction has been committed, changes over database objects cannot be undone
but by the execution of a second transaction.

Safekeeping the ACID properties, is the ultimate task to be achieved in transaction
processing. However, recent works [11] in the concurrency control side propose the
relaxation of isolation conditions. The benefit is an improvement in the number of



MY . » . M - . s 2
Mobile nested transactions monitor based on multi-agent systems: work (low layer 41

concurrent clients; they are allowed to access a shared resource without introducing
further conflicts in the read/write operations.

3.2 Concurrency control and distributed transactions

A client is responsible of requesting the execution of operations to a server. The
natural consequence of multiple clients requests, arises as a concurrency control issue
over the objects to be used. It depends on whether a transaction needs to read or write
an object that the server blocks the resource for shared or exclusive access
respectively.

A flat transaction can be thought of a set of atomic operations over a group of
database objects. These operations are organized under a partial order [14]. Three
bracket operations mark the context of a transaction: Begin, Commit, Abort. These
latter are invoked at the end in order to indicate whether the transaction exccution
succeeded or not.

Every request belonging to a flat transaction is executed over objects from the
same server. In a distributed transaction, there are two or more servers holding the
resources that will be read or modified by a transaction. Thus, there is necessary to
have a Coordinator in charge of managing the success or failure result from the other

participants. This is commonly achieved under the Two-Phase Commit Protocol
(2PC) [19].

3.3 Nested transactions

The idea of Nested Transactions extends the distributed concept by allowing other
transactions (known as children) to be born under the context of a parent transaction
(7, 17, 18). In this way, there will be a tree of nodes executing read/write operations
and capable of spawning inner sub-transactions. Available computing resources are
the unique limitation for the tree deepness; however, it is no longer required to
complete all the operations in one place. Each child could be executed in different
locations, that is, nested transactions are distributed. In [12, 13], it has been concluded
that nested transactions feature special conditions under which it is not possible to
comply with the four ACID properties. Except for the root node, children and leaf
nodes fail ensuring Durabiliry. The reason is that any changes over the database are
actually performed until the root node commits or aborts. A transaction tree example
is depicted in Figure 2.

Nested Transactions suit in mobile applications involving wireless or cellular
connections for the following reasons. A compound transaction with nested children,
offers better performance in concurrency and fault tolerance. Children could be
executed in a parallel fashion and each one holds local responsibility for committing
or aborting. However, none of the operations are actually reflected in the databasc
content until the root transaction commits or aborts. Some other Nested Transactions
features include the optionally of success for children nodes. According to this. a root
transaction is able to commit even if some of its branches fail during execution.



42 lorge Martinez, Matias Alvarado

Fig. 2 Nested transaction. The Root node T spawns four children. T, spawns two more children
resulting in four leaf nodes. It can be seen that Ty, actually works as sub-transaction for both T,
and T,. T; and T, work at the same node

Fig. 3. Mobile Nested Transaction

3.4 Mobile nested transactions

In (12} the concept of Mobile Nested Transactions is introduced. These are the result
of combining the concepts of Nested Transactions with Mobile Computing,
particularly, a group of mobile hosts. There, a mobile device represents each node in
the transaction tree. A noticeable difference between the general model and the above
proposal is found in the read/write access. In [17], only leaf nodes are able to access
database objects whereas the [14] definition enables intermediate nodes to execute
such operations as well. In contrast with the general definition from 3.3, the next



Mobile nested transactions monitor based on multi-agent systems: work llow layer 43

remarks are considered in the Mobile Nested approach: child nodes have only one
parent, read/write operations are actually done at the lowest (leaf) level and, each
transaction node is located at one mobile host. This can be seen in Figure 3.

4 Mobile nested transactions monitor

4.1 Underlying formal model

Logic of Interaction [1], (2] was introduced as a formal model for multi-agent
systems, aimed to deal with the balance agent’s knowledge and actions. The central
issue is that individual agent actions do interact. So, an action representation must
make these interactions explicit and need to explicitly model different processes. The
important aspect is the way in which agents perform the actions. In this sense,
provides a model for synchronized, parallel, sequential and concurrent actions carried
out by a single agent and by a group. Modal temporal logic formalism is used for
action representation and modelling. _

The key elements from the Logic of Interaction are related to Beliefs (pre-
conditions), Goals (post-conditions) and Action execution itself. There has been
defined a set of operators for interactions control. These are aimed to help in
differentiating actions based on their space and time nature. Based on this, agents can
perform: sequential, parallel, synchronized and concurrent actions. The full
definitions concerning the Logic of Interaction are out of the scope of this paper.

In order to pave the way that connects a formal model with the actual
implementation, only some elements from the logic of interaction have been
translated to code. The system has been implemented in an open environment using
JADE (Java Agent DEvelopment Framework) as the agent platform [6]. Agents use
ontologies in order to represent internally pieces of information (3]. This is used in the
exchanged messages and for inner control and operations.

4.2 Workflow layer

A Transaction Processing Monitor is conceived as the software in charge of managing
simple requests from users that will be scaled over a distributed system [4]. It is also
responsible for safekeeping the ACID properties during concurrent transactions
execution. In a few words the monitor: receives some request, transiates it into a
system understandable language, triggers the transaction beginning, controls the
commit or abort operations and finally, reports the result to the user.

According to [5], Transaction Processing Monitors featuring Nested Transactions
as the core model for mission-critical applications will better reflect the business
process nature. Three layers define the gross structure of Transaction Processing
monitor:

Presentation. It receives instructions from the user and translates them into a
system understandable language. These instructions are sent to the workflow layer.
The result of the transaction is later presented to the user.



44 Jorge Martinez, Matias Alvarado

Workflow. As the name implies, this layer is responsible for routing, managing and
answering the requests received from the presentation layer. Instructions are turned to
the third layer and results are sent back to the first layer.

Database. The actual access to database objects is achieved at this level. The
results, either successful or not, are informed to the previous layer. Currently, the
implementation features an embedded database at each device: Pointbase Micro
Edition [20). Since the agents development framework is Java-based, it was required
a compatible database tool that could run over mobile devices.

At this point, it has been implemented a basic workflow layer for the Mobile
Nested Transactions Monitor. In particular, it has been implemented a Nested Two-
Phase Commit. In this mechanism, a set of participants join the transaction started by .
some user at a root node. Descendant nodes may join each participant until a tree is
completed. Once the tree is ready, each leaf informs its parent whether they failed or
succeeded in executing their assigned set of operations. Eventually, all this
information reaches the root node, then:

Phase 1. The root node asks all the successful nodes to get ready for commit. Since
intermediate nodes may abort locally, only those descendants that are sons of
successful nodes receive the canCommit request sent by the root node.

Phase 2. With the retrieved answers, the root node decides to commit or abort and
informs the final decision to all of the involved nodes in the 2PC.

The above process is shown in Figure 4.

canCommit?

“ L ‘/C‘OMMIT
AN
T

2 T!

2 A

commit commil

Fig. 4. Twb-Phase Commit protocol in a Nested Transaction. Since Ty, and T); do not reccive a
final commit or abort, they abort by default after a timeout

4.3 Control mechanism for transactional agents behaviour

During transaction processing, agents may find that some data objects are already in
use due to concurrent access by other clients. In order to address this sort of events, a
control mechanism has been proposed. This is an embedded behavior in each agent
taking part in a given transaction. Agent’s actions are classified into mandatory and



Mobile nested transactions monitor based on multi-agent systems: work(low layer 45

optional, strong and weak; the combination of these traits and the expected behavior
can be found in Table 1.

Table 1. Actions classiffication supporting concurreny control in agents interaction and nested
transactions processing. The description column shows what to do in case of action failure

Type . . Sub-Type - . . Description
Mandatory Strong The transaction is aborted.
Mandatory Weak A new attempt is completed unless the user cancels.
Optional Strong It is ignored for this transaction but another
transaction is scheduled for later attempts.
Optional Weak No more attempts are done.

The above classification helps an agent-node in the transaction tree in decision-
making. This may happen while trying to access a data object that is already locked,
or even when communication is lost with one of the agent’s siblings. This is achieved
by introducing alternative ways for the node to operate with a different set of
descendants from the original one. In this way, an agent is not fully required to wait
for an object to get unlocked. If the failed operation is not mandatory, a new attempt
can be done, either in the same transaction or by scheduling a future transaction.
There is introduced a notion of action persistence in the sense that the agent, will
attempt to complete their assigned set of instructions —whenever it is possible.
Previous user feedback is required in order to set the configuration parameters that
will rule the agent’s behavior for this mechanism.

As host crashes and breaks in communications are expected events in a mobile
environment, the proposed mechanism works as a base for logging and recovery
controls. On the other hand, better concurrency control is achieved through a Lock
Manager [11, 7). These two mechanisms are part of an undergoing effort and
currently out of the scope of this paper.

5§ Conclusions

The multi-agent systems approach is firmly devoted to problems that are distributed
in nature and located at fast evolving environments, such as those found in the so
called mobile computing. Under such context, users are able to access and process
information with the help of mobile devices. However, these latter are prone to
operation outages that may endanger data consistency.

The Mobile Nested Transaction concept was introduced as an alternative to deal
with the ACID safekeeping challenge in the operation of a sct of mobile hosts. There,
sub-transactions are allowed to born inside the context of a parent transaction.
Children nodes failures no longer imply that the root parent has to abort the complete
transaction. A Transaction Processing Monitor is under development; it is based ina
multi-agent system. In this paper, it was presented the Workflow layer featuring a
Mobile Two-Phase Commit protocol.

The Logic of Intcraction is used to rule the agent’s action coordination. It is
implemented in an open environment (JADE). A control mechanism was introduced



46 lorge Martincz, Matias Alvarado

in order to achieve a transactional-like behaviour in the agent’s participation within a
Mobile Nested Transaction.

Pending work is heavily related to implement the other two layers from the
monitor: Presentation and Database access. In this latter, a Lock Manager mechanism
is also considered. It will help to improve concurrency control in shared data objects.

References

1. Alvarado, M., Sheremetov, L.: Modal Structure for Agents Interaction Based on Concurrent
Actions. In V. Maik, J. Miiller, M. Pchouek (eds.): Multi-Agent Systems and Applications
HI: 3rd Intenational Central and Eastern European Conference on Multi-Agent Systems.
Lecture Notes in Computer Science, Vol. 2691. Springer-Verlag, Berlin Heidelberg New
York (2003) 29-39

2. Alvarado, M., Sheremetov, L., German, E., Alva, E.: Logic of Interaction for Multiagent
Systems. In: C.A. Coello Coello, A. de Albornoz, L.E. Sucar, O.C. Battistutti (eds.): MICAI
2002: Advances in Anificial Intelligence: Second Mexican Intermational Conference on
Antificial Intelligence. Lecture Notes in Computer Science, Vol. 2313. Springer-Verlag,
Berlin Heidelberg New York (2002) 378-396

3. Bellifemine, F., Poggi, A., Rimassi, G.: JADE: A FIPA-Compliant agent framework, Proc.
Practical Applications of Intelligent Agents and Multi-Agents, April (1999), 97-108.

4. Bemnstein, P.A., Newcomer, E.: Principles of Transaction Processing. Morgan Kaufmann
Publishers Inc. (1997)

5. Byte Archive at hitp//www.byte.com/art/9504/secl 1/art1.htm

6. Caire, G.: JADE Tutorial: Application-defined content languages and ontologics. TILab
S.p.A. (2002)

7. Coulouris G., Dollimore J. , Kindberg T.: Distributed Systems. Addison Wesley (2002)

8. van Eijk, R.J., Ebben, P.W.G., Bargh, M.S.: Implementation of a scheduler agent system for
traveling users. In proc. of Workshop on Ubiquitous Agents on embedded, wearable, and
mobile devices. Bologna (2002)

9. Finin, T., Joshi, A., Kagal, L., Ratsimor, O., Avancha, S., Korolev, V., Chen, H., Perich, F.,
Cost., S.: Intelligent Agents for Mobile and Embedded Devices. International Journal of
Cooperative Information Systems (2002)

10. Fischer, K., Hutter, D., Klush, M., Stephan, W.: Towards secure mobile multiagent based
electronic marketplace systems. Electronic Notes in Theoretical Computer Science. Vol. 63.
Elsevier Science (2002)

11. Gama, L.A., Alvarado, M.: Concurrency control for Read-Only in Mobile Nested
Transactions. In proc. of the 2* Workshop on Intelligent Computing in the Petroleum
Industry ICPI (2003)

12. Gama, L.A., Alvarado, M.: Mobile Nested Transactions for Nomadic Teams. In: Alvarado,
M., Sheremetov, L., Cantu, F.: Special Issue on Intelligent Computing for Pretoleum
Industry. Elsevier. (2003)

[3. Gama, L.A., Alvarado, M.: Transacciones para Cémputo Mévil: presente y perspectiva
futura. Revista Digital Universitaria, Vol. 3. No. 4. http://www.revista.unam.mx (2002)

14. Gray, J., Reuter A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, Inc. (1993)

15. Loke, S.W.: Supporting Intelligent BDI Agents on Resource-Limited Mobile Devices -
Issues and Challenges from a Mobile Database Perspective. In proc. of Workshop on
Ubiquitous Agents on embedded, wearable, and mobile devices. Bologna (2002)

16. Mitchell, J.G., Dion J.: A Comparison of two network-based file servers. Comms. ACM,
Vol. 25, No. 4. (1982) 23345 :



Mobile nested transactions monitor based on multi-agent systems: workflow layer 47

17. Moss, J. E. B.: Nested Transactions: An Approach to Reliable Distributed Computing. MIT
Press, Cambridge, MA (1985) :

18. Nested Trans.at hltp:llwww.cs.panam.edul—mcnglCourscIC86334INotdmastcrlnode89.html

19. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. 2nd Ed., Prentice-
Hall, Inc.(1999) 381-401.

20. Pointbase Micro Developer’s Guide at http://www.pointbase.com/support/docs/pbmicro.pdf

21. Wooldridge, M.: An Introduction to Multi-Agent Systems. John Wiley & Sons. England
(2001)

21. Zaslavsky, A., Tahir Z: Mobile Computing: Overview and Current Status. Australian
Computer Journal. Vol. 30. No. 2 (1998)



